Hominid Evolution
Ardipithecus ramidus (4.4 million years ago)
-divergent large toe with a rigid foot
-pelvis tree climbing and bipedal activity
-ape ancestor not chimpanzee like
-canine teeth = same size male and female
-wooded environment
-3 ft 11 in, 110 lbs
Australopithecus afarensis (2.95-3.85 million years ago)
-ape and human characteristics
-apelike features:
face proportions
braincase (small brain)
strong arms with curved fingers (climbing trees)
-human features:
small canine teeth
body stood on two legs
-could live on trees and ground
-males (4ft 11in, 92 lbs)
-females (3ft 5in, 64 lbs)
Australopithecus africanus (2.1-3.3 million years ago)
-rounder cranium w/ larger brain and smaller teeth
-apelike:
long arms
sloping face that juts out (pronounced jaw)
-pelvis, femur, footbones: walked bipedally
-shoulder and hand: climbing
-males (4ft 6in, 90 lbs)
-females (3ft 9in, 66 lbs)
Homo habilis (1.4-2.4 million years ago)
-larger braincase
-smaller face and teeth
-ape like features: long arms & prognathic face
-average (3ft 4in- 4ft 5in, 70 lbs)
Homo erectus (143k-1.89mil years ago)
-more adapted to the ground
shorter arms
long legs
=walk and run more
-average (4ft 9in - 6ft 1in, 88 - 150lbs)
Homo neanderthalensis (28-200 thousand years ago
-closest extinct human relative
-skull features
large middle part of face
angle cheek bones
huge nose for different air (humidifying and warming)
-shorter stockier bodies (cold environments)
-brain same size sometimes larger
males (5ft 5in, 143 lbs)
females (5ft 1in, 119lbs)
Homo sapiens (200,000 to present)
-large brains
-thin walled high vaulted skull
-flat almost vertical forehead
-smaller teeth
Summary
-The braincase gets larger incrementally
-Generally get taller and heavier
-Shorter arms and longer legs
-Nose smaller
-Smaller teeth
-Became only bipedal
-These traits are meant to suit us to live on the ground
Carbon dating
Carbon dating is used to determine the age of fossils and requires the use of the radioactive isotope carbon-14. Carbon-14 is produced by cosmic ray protons which blast nuclei in the upper atmosphere, thus producing neutrons and bombard nitrogen creating carbon-14. This occurs at a rate which is constant, therefore we can use radioactive emissions of once-living matter and compare it to living ones. The results allows us to make a measurement of the time that passed.
Radioactive half-life is the time for half the radioactive nuclei to go through radioactive decay. Unstable radioisotopes decay into more stable forms (C-14 decays to C-12, which is stable.)
Living organisms constantly exchange carbon with the atmosphere in the form of CO2; this results with the organisms to have nearly the same ratio of C-14 to C-12 with the atmosphere. However when the organism dies, it beings to undergo radioactive decay in which C-14 decays into a more stable C-14. This can be used to measure the amount of time an organism had been dead for.
Carbon dating is used for younger fossils because of the difference in half-life.
C-14 has a half-life of 5700 years which is useful for fossils that are 1000 to 10000 years old, whereas potassium (K40) has a half life of around 1.3 billion years therefore allowing it to be used for much older fossils.